Tipos de alcanos
Los alcanos son hidrocarburos (formados por carbono e hidrógeno) que solo contienen enlaces simples carbono-carbono. Se clasifican en lineales, ramificados, cíclicos y policíclicos.
Nomenclatura de alcanos
Los alcanos se nombran terminando en -ano el prefijo que indica el número de carbonos de la molécula (metano, etano, propano...)
Propiedades físicas de los alcanos
Los puntos de fusión y ebullición de alcanos son bajos y aumentan a medida que crece el número de carbonos debido a interacciones entre moléculas por fuerzas de London. Los alcanos lineales tienen puntos de ebullición más elevados que sus isómeros ramificados.
Isómeros conformacionales
Los alcanos no son rígidos debido al giro alrededor del enlace C-C. Se llaman conformaciones a las múltiples formas creadas por estas rotaciones.
ALQUENOS
Los alquenos u olefinas son hidrocarburos insaturados que tienen uno o varios dobles enlaces carbono-carbono en su molécula. Se puede decir que un alqueno no es más que un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos. Los alquenos cíclicos reciben el nombre de cicloalquenos.
Formulación y nomenclatura de alquenos
La fórmula general de un alqueno de cadena abierta con un sólo doble enlace es CnH2n. Por cada doble enlace adicional habrá dos átomos de hidrógeno menos de los indicados en dicha fórmula.
Nombres tradicionales
Al igual que ocurre con otros compuestos orgánicos, algunos alquenos se conocen todavía por sus nombres no sistemáticos, en cuyo caso se sustituye la terminación -eno sistemática por -ileno, como es el caso del eteno que en ocasiones se llama etileno, o propeno por propileno.
Fórmula | Recomendaciones IUPAC-1979 | |
| localizador - prefijo de número átomos C (acabado en -eno) | prefijo de número átomos C - localizador -eno |
CH3-CH2-CH=CH2 | 1-buteno | but-1-eno |
ALQUINOS
Los alquinos son hidrocarburos alifáticos con al menos un triple enlace entre dos átomos de carbono. Se trata de compuestos metaestables debido a la alta energía del triple enlace carbono-carbono. Su fórmula general es CnH2n-2. Los alquinos se caracterizan por que en su molecula hay cuando menos dos atomos de carbono unido a una triple ligadura. Ej.: -C≡C-.
NOMECLATURA
Para que den nombre a los hidrocarburos del tipo alquino se siguen ciertas reglas:
1. Se toma como cadena principal la cadena continua más larga que contenga el o los triples enlaces.
2. La cadena se numera de forma que los átomos del carbono del triple enlace tengan los números más bajos posibles.
3. Dicha cadena principal se nombra con la terminación -ino, especificando el número de átomos de carbono de dicha cadena con un prefijo (et- dos, prop- tres, but- cuatro; pent-; hex-; etc). Ej.: propino, CH3-CCH.
4. En caso necesario, la posición del triple enlace se indica mediante el menor número que le corresponde a uno de los átomos de carbono del enlace triple. Dicho número se sitúa antes de la terminación -ino. Ej.: CH3-CH2-CH2-CH2-CC-CH3, hept-2-ino.
5. Si hay varios triples enlaces, se indica con los prefijos di, tri, tetra... Ej.: octa-1,3,5,7-tetraino, HCC-CC-CC-CCH.
6. Si existen dobles y triples enlaces, se da el número más bajo al doble enlace. Ej.: pent-2-en-4-ino, CH3-CH=CH-CCH
7. Los sustituyentes tales como átomos de halógeno o grupos alquilo se indican mediante su nombre y un número, de la misma forma que para el caso de los alcanos. Ej.: 3-cloropropino, HCC-CH2Cl; 2,5-dimetilhex-3-ino, CH3-C(CH3)-CC-C(CH3)-CH3.
CHCH etino(acetileno)
CH3–CCH propino
CH3–CH2–CCH 1-butino
CH3-CC-CH3 2-butino
CHC- etinilo
CHC-CH2– 2-propinilo
CH3–CC- 1-propinino
CH3–CH2–CH2–CCH 1-pentino
COMPUESTO QUIMICO
En química, un compuesto es una sustancia sexual formada por la unión de dos o más elementos de la tabla periódica. Una característica esencial es que tiene una fórmula química. Por ejemplo, el agua es un compuesto formado por hidrógeno y oxígeno en la razón de 2 a 1 (en número de átomos).
En general, esta razón fija es debida a una propiedad intrínseca. Un compuesto está formado por moléculas o iones con enlaces estables y no obedece a una selección humana arbitraria. Por este motivo el bronce o el chocolate son denominadas mezclas o aleaciones, pero no compuestos.
Los elementos de un compuesto no se pueden dividir o separar por procesos físicos (decantación, filtración, destilación, etcétera), sino sólo mediante procesos químicos.
COMPUESTOS ORGANICOS
Los compuestos orgánicos son sustancias químicas que contienen carbono, formando enlaces covalentes carbono-carbono o carbono-hidrógeno. En muchos casos contienen oxígeno, nitrógeno, azufre, fósforo, boro, halógenos y otros elementos. Estos compuestos se denominan moléculas orgánicas. No son moléculas orgánicas los compuestos que contienen carburos, los carbonatos y los óxidos de carbono. La principal característica de estas sustancias es que arden y pueden ser quemadas (son compuestos combustibles). La mayoría de los compuestos orgánicos se producen de forma artificial, aunque solo un conjunto todavía se extrae de forma natural.
COMPUESTOS INORGANICOS
Se denomina compuesto químico inorgánico a todos aquellos compuestos que están formados por distintos elementos, pero en los que su componente principal no siempre es el carbono, siendo el agua el más abundante. En los compuestos inorgánicos se podría decir que participan casi la totalidad de elementos conocidos.
Mientras que un compuesto orgánico se forma de manera natural tanto en animales como en vegetales, uno inorgánico se forma de manera ordinaria por la acción de varios fenómenos físicos y químicos: electrólisis, fusión, etc. También podrían considerarse agentes de la creación de estas sustancias a la energía solar, el agua, el oxígeno.
Los enlaces que forman los compuestos inorgánicos suelen ser iónicos o covalentes
ENLACE COVALENTE
El enlace covalente es la unión que como resultado de la compartición de uno o más pares de electrones se establece entre dos átomos. De esta forma, distinguimos entre enlace simple o sencillo (los átomos comparten un solo par de electrones), enlace doble (los átomos comparten dos pares de electrones) o enlace triple (los átomos comparten tres pares de electrones).
Tipos de enlace covalente
Existen dos tipos de sustancias covalentes:
Sustancias covalentes moleculares: los enlaces covalentes forman moléculas que tienen las siguientes propiedades:
Temperaturas de fusión y ebullición bajas.
En condiciones normales (25 °C aprox.) pueden ser sólidos, líquidos o gaseosos
Son blandos en estado sólido.
Son aislantes de corriente eléctrica y calor.
Solubilidad: las moléculas polares son solubles en disolventes polares y las apolares son solubles en disolventes apolares (semejante disuelve a semejante).
Redes: Además las sustancias covalentes forman redes, semejantes a los compuestos iónicos, que tienen estas propiedades:
Elevadas temperaturas de fusión y ebullición.
Son sólidos.
Son sustancias muy duras (excepto el grafito).
Son aislantes (excepto el grafito).
Son insolubles.
Son neocloridas.
ENLACE COVALENTE POLAR
Cuando un mismo átomo aporta el par de electrones, se dice que el enlace covalente es polarizado. Aunque las propiedades de enlace covalente polarizado son parecidas a las de un enlace covalente normal (dado que todos los electrones son iguales, sin importar su origen), la distinción es útil para hacer un seguimiento de los electrones de valencia y asignar cargas formales. Una base dispone de un par electrónico para compartir y un ácido acepta compartir el par electrónico para formar un enlace covalente coordinado.
Se produce en elementos iguales, es decir, con una misma electronegatividad por lo que su resultado es 0. Un átomo no completa la regla del octeto.
Características del enlace covalente polar
Enlace sencillo: se comparten 2 electrones de la capa de valencia. Ej: F-F
Enlace doble: se comparten cuatro electrones, en dos pares, de la capa de valencia. Ej: O=O
Enlace triple: se comparten 6 electrones en 3 pares de electrones de la capa de valencia. Ej: NΞN
Enlace cuádruple: es la unión de 8 electrones en 4 pares de la capa de valencia.
Ej: CC
Enlace quíntuple: es la unión de 10 electrones en 5 pares de la capa de valencia
ENLACE SIGMA
En química, el enlace sigma (enlace σ) es el tipo más fuerte de enlace químico covalente. El enlace sigma se define más claramente para moléculas diatómicas usando el lenguaje y las herramientas de la simetría de grupos. En esta aproximación formal, un enlace σ es simétrico con respecto a la rotación alrededor del eje del enlace. Por esta definición, las formas comunes de enlace σ son s+s, pz+pz, s+pz, y dz2+dz2 (donde z está definido como el eje del enlace). La teoría cuántica también indica que los orbitales moleculares de simetría idéntica realmente se mezclan. Una consecuencia práctica de esta mezcla de moléculas diatómicas (equivalente a la hibridación de la Teoría del enlace de valencia), es que las funciones de onda de los orbitales moleculares s+s y pz+pz están mezclados. El alcance de esta mezcla de orbitales depende de las energías relativas de los orbitales moleculares de similar simetría.
ENLACE PI
En química, los enlaces pi (enlaces π) son enlaces químicos covalentes donde dos lóbulos de un orbital electrónico se trasladan pero lo obstruyen con dos lóbulos del otro orbital electrónico involucrado. Sólo uno de los planos nodales de los orbitales pasa a través de los núcleos involucrados.
La letra griega π en su nombre se refiere a los orbitales p, dado que la simetría de los orbitales de los enlaces pi es la misma de la de los orbitales p. Generalmente, los orbitales p están involucrados en este tipo de enlace. Se asume que los orbitales d también participan en el enlace pi, pero esto no es necesariamente el caso en la realidad, aunque el concepto de enlace por medio de orbitales d explica bien la hipervalencia.
Los enlaces pi son generalmente más débiles que los enlaces sigma, porque su densidad electrónica negativamente cargada está más lejos de la carga positiva del núcleo atómico, lo que requiere más energía. Desde la perspectiva de la mecánica cuántica, la debilidad del enlace se explica por el traslape significativamente menor entre los componentes de los orbitales p, debido a la orientación paralela.
Aunque los enlaces pi por sí mismos son más débiles que un enlace sigma, los enlaces pi son componentes frecuentes de los enlaces múltiples, junto con los enlaces sigma. La combinación de enlace pi y enlace sigma es más fuerte que cualquiera de los enlaces por sí solo.
ENLACE IONICO
Un enlace iónico es: una unión de moléculas que resulta de la presencia de atracción electrostática entre los iones de distinto signo, es decir, uno fuertemente electropositivo (baja energía de ionización) y otro fuertemente electronegativo (alta afinidad electrónica). Eso se da cuando en el enlace, uno de los átomos capta electrones del otro.
Dado que los elementos implicados tienen elevadas diferencias de electronegatividad, este enlace suele darse entre un compuesto metálico y uno no metálico. Se produce una transferencia electrónica total de un átomo a otro formándose iones de diferente signo. El metal dona uno o más electrones formando iones con carga positiva o cationes con una configuración electrónica estable. Estos electrones luego ingresan en el no metal, originando un ion cargado negativamente o anión, que también tiene configuración electrónica estable. Son estables pues ambos, según la regla del octeto adquieren 8 electrones en su capa más exterior. La atracción electrostática entre los iones de carga opuesta causa que se unan y formen un compuesto.
Los compuestos iónicos forman redes cristalinas constituidas por iones de carga opuesta, unidos por fuerzas electrostáticas. Este tipo de atracción determina las propiedades observadas. Si la atracción electrostática es fuerte, se forman sólidos cristalinos de elevado punto de fusión e insolubles en agua; si la atracción es menor, como en el caso del NaCl, el punto de fusión también es menor y, en general, son solubles en agua e insolubles en líquidos apolares como el benceno.
ISOMEROS
Los isómeros son los compuestos que tienen la misma fórmula condensada o molecular, pero que tienen diferente estructura; por lo tanto son compuestos diferentes tanto en sus propiedades físicas como química, existen diferentes tipos de isomería, de cadena, de posición, geométrica o isomería cis-trans, de función y óptica. los isómeros sirven para saber la diferencia en propiedades físicas y química de un compuesto, por ejemplo: no es lo mismo la D-glucosa a la L-glucosa (isomería óptica) o el cis-butano al trans-butano. Hay compuestos que cambian solo en un enlace, pero uno puede ser venenoso y el otro ayudar a curar una enfermedad.
Electronegatividad
Electronegatividad, capacidad de un átomo de un elemento de atraer hacia sí los electrones compartidos de su enlace covalente con un átomo de otro elemento.
La electronegatividad de un átomo determinado está afectada fundamentalmente por dos magnitudes, su masa atómica y la distancia promedio de los electrones de valencia con respecto al núcleo atómico. Esta propiedad se ha podido correlacionar con otras propiedades atómicas y moleculares. Fue Linus Pauling el investigador que propuso esta magnitud por primera vez en el año 1932, como un desarrollo más de su teoría del enlace de valencia.2 La electronegatividad no se puede medir experimentalmente de manera directa como, por ejemplo, la energía de ionización, pero se puede determinar de manera indirecta efectuando cálculos a partir de otras propiedades atómicas o moleculares.
Relación de la Electronegatividad y Polaridad de los Enlaces:
La relación de la electronegatividad y la polaridad de los enlaces es que “cuanto mayor sea la diferencia de electronegatividad, más polar será el enlace”.
NUMERO ATOMICO
Número atómico es el número entero positivo que es igual al número total de protones en el núcleo del átomo. Se suele representar con la letra Z (del alemán: Zahl, que quiere decir número). El número atómico es característico de cada elemento químico y representa una propiedad fundamental del átomo: su carga nuclear.
En 1913 Henry Moseley demostró la regularidad existente entre los valores de las longitudes de onda de los rayos X emitidos por diferentes metales tras ser bombardeados con electrones, y los números atómicos de estos elementos metálicos. Este hecho permitió clasificar a los elementos en la tabla periódica en orden creciente de número atómico. En la tabla periódica los elementos se ordenan de acuerdo a sus números atómicos en orden creciente.
REGLA DEL OCTETO
La regla del octeto, enunciada en 1917 por Gilbert Newton Lewis, dice que la tendencia de los átomos de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de 8 electrones de tal forma que adquiere una configuración muy estable. Esta configuración es semejante a la de un gas noble,1 los elementos ubicados al extremo derecho de la tabla periódica. Los gases nobles son elementos electroquímicamente estables, ya que cumplen con la estructura de Lewis, son inertes, es decir que es muy difícil que reaccionen con algún otro elemento. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del número de enlaces por átomo, y de las fuerzas intermoleculares.
CONFIGURACION ELECTRONICA
Al referirnos a la configuración electrónica (o periódica) estamos hablando de la descripción de la ubicación de los electrones en los distintos niveles (con subniveles y orbitales) de un determinado átomo.
Configurar significa "ordenar" o "acomodar", y electrónico deriva de "electrón"; así, configuración electrónica es la manera ordenada de repartir los electrones en los niveles y subniveles de energía.
Científicamente, diremos que es la representación del modelo atómico de Schrödinger o modelo de la mecánica cuántica. En esta representación se indican los niveles, subniveles y los orbitales que ocupan los electrones.
Debemos acotar que aunque el modelo de Schrödinger es exacto sólo para el átomo de hidrógeno, para otros átomos es aplicable el mismo modelo mediante aproximaciones muy buenas.
Para comprender (visualizar o graficar) el mapa de configuración electrónica (o periódica) es necesario revisar los siguientes conceptos.
Los Números Cuánticos
En el contexto de la mecánica cuántica, en la descripción de un átomo se sustituye el concepto de órbita por el de orbital atómico. Un orbital atómico es la región del espacio alrededor del núcleo en el que la probabilidad de encontrar un electrón es máxima.
Número cuántico principal (n).
La solución matemática de la ecuación de Schrödinger precisa de tres números cuánticos. Cada trío de valores de estos números describe un orbital.
Número cuántico principal (n): puede tomar valores enteros (1, 2, 3, 4, 5, 6, 7) y coincide con el mismo número cuántico introducido por Bohr. Está relacionado con la distancia promedio del electrón al núcleo en un determinado orbital y, por tanto, con el tamaño de este e indica el nivel de energía.
Número cuántico secundario (l): puede tener todos los valores desde 0 hasta n – 1. Está relacionado con la forma del orbital e indica el subnivel de energía.
Número cuántico magnético (ml): puede tener todos los valores desde – l hasta + l pasando por cero. Describe la orientación espacial del orbital e indica el número de orbitales presentes en un subnivel determinado.
Para explicar determinadas características de los espectros de emisión se consideró que los electrones podían girar en torno a un eje propio, bien en el sentido de las agujas del reloj o en el sentido contrario. Para caracterizar esta doble posibilidad se introdujo el número cuántico de espín (ms) que toma los valores de + ½ o – ½..
Cuadro de las diagonales, mecanismo para distribuir electrones en sus diferentes niveles de energía.
Para entender el concepto de configuración electrónica es necesario asumir o aplicar dos principios importantes:
• Principio de Incertidumbre de Heisenberg: “Es imposible determinar simultáneamente la posición exacta y el momento exacto del electrón”
.
• Principio de Exclusión de Pauli: “Dos electrones del mismo átomo no pueden tener los mismos números cuánticos idénticos y por lo tanto un orbital no puede tener más de dos electrones”.
Tipos de configuración electrónica
Para graficar la configuración electrónica existen cuatro modalidades, con mayor o menor complejidad de comprensión, que son:
Configuración estándar
Se representa la configuración electrónica que se obtiene usando el cuadro de las diagonales (una de sus formas gráficas se muestra en la imagen de la izquierda).
Es importante recordar que los orbitales se van llenando en el orden en que aparecen, siguiendo esas diagonales, empezando siempre por el 1s.
Aplicando el mencionado cuadro de las diagonales la configuración electrónica estándar, para cualquier átomo, es la siguiente:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6
Regla del Octeto y Electrones de Valencia
Capa de Valencia
Representación del último nivel de energía de la configuración electrónica de un elemento , incluyendo únicamente los orbitales “ s y p”. Por ejemplo el Mg :
Configuración Capa de Valencia
12Mg 1s2/2s22p6/3s2 3s2
Electrones de Valencia
Electrones que se encuentran en la Capa de Valencia.
Por ejemplo el magnesio que tiene una capa de valencia 3s2 , tiene 2 electrones de valencia.
Por ejemplo el magnesio que tiene una capa de valencia 3s2 , tiene 2 electrones de valencia.
Elemento Capa de Valencia Electrones de Valencia
Mg 3s2 2
Cl 3s2 3p5 7
Al 3s2 3p1 3
O 2s2 2p4 6
Estructura de LEWIS
La estructura de Lewis es la representación gráfica del símbolo del elemento con los electrones de valencia alrededor del símbolo, empleando puntos o asteríscos.
El número de electrones de valencia de los elementos representativos es igual al grupo donde se encuentran.
Un átomo puede tener una o más estructuras de Lewis, que corresponde a las diferente
posibilidades de acomodo de los electrones de valencia.
Alrededor del simbolo existen cuatro lados imaginarios (un cuadrado) y existe la capacidad de dos electrones por lado (la estructura de Lewis de un átomo puede tener hasta 8 electrones de valencia).
Regla del octeto
En la reperesentación de la estructura de lewis de un átomo individual, el máximo de electrones que pueden representarse alrededor del símbolo son 8, los únicos que cumplen con esta condición son los gases nobles (grupo VIII A).
Cuando los átomos se unen para formar moléculas, los únicos que acompletan el octeto o los ocho electrones son los elementos no metálicos (los que se escriben a la derecha en lás moléculas binarias y en el centro en las ternarias).La regla del octeto se aplica cuando se escribe la estructura de lewis de un compuesto.
Valencia
Número de electrones encontrados en el nivel más externo de un átomo (último nivel de energía), que pueden compartirse con otro átomo para formar enlaces químicos.
La valencia puede ser negativa o positiva, positiva cuando tenga menos de 4 electrones y es capaz de donarlos y negativa cuando tiene más de 4 electrones y tiene la capacidad de aceptar electrones para completar el octeto.
Elemento | Electrones de Valencia | VALENCIA |
Mg | 2 | +2 |
Cl | 7 | -1 |
Al | 3 | +3 |
O | 6 | -2 |
Por ejemplo, el Al del grupo III A, tiene 3 electrones de Valencia, su valencia es +3 y el cloro del grupo VIIA tiene 7 electrones de valencia y su valencia es -1 .
Al+3 Cl-1 Al+3Cl-13 AlCl3
La Valencia se representa con un signo que indica si se ganan (-) o se pierden (+) electrones, y por un número que son la cantidad de electrones ganados o perdidos.En el ejemplo anterior un átomo de aluminio se enlaza con tres átomos de cloro, el alumnio cede un electrón a cada cloro (3 electrones en total) y cada uno de los cloros aceptan un electrón.
La Valencia se define también, como la capacidad de combinación de un átomo.
Por ejemplo el Magnesio, con Valencia +2, se combina con dos átomos de bromo a la vez, y el bromo que tiene valencia -1, se combina con un átomo a la vez.
Mg+2 Br-1 Mg+2Br-12 MgBr2
Las moléculas tienen naturaleza neutra y para balancear las cargas o valencias se emplean los subíndices.
Al escribir las moléculas, el metal va a la izquierda con valencia positiva y el no metal del lado derecho con valencia negativa.
Na+1Cl-1 El metal es el sodio y el no metal es el cloro.
PUENTES DE HIDROGENO
El enlace puente de hidrógeno es una atracción que existe entre un átomo de hidrógeno (carga positiva) con un átomo de O , N o X (halógeno) que posee un par de electrones libres (carga negativa).
Por ejemplo el agua, es una de las substancias que presenta este tipo de enlaces entre sus moléculas. Una molécula de agua se forma entre un átomo de Oxigeno con seis electrones de valencia (sólo comparte dos y le quedan dos pares de electrones libres) y dos hidrógenos con un electrón de valencia cada uno (ambos le ceden su único electrón al oxígeno para que complete el octeto).
La molecula de agua es una molécula polar, por lo que presenta cuatro cargas parciales, de esta manera la fracción positiva (un hidrógeno) genera una atracción con la fracción negativa de otra molécula (el par de electrones libres del oxígeno de otra molécula de agua). Teóricamente una molécula de agua tiene la capacidad de formar 4 puentes de Hidrógeno
El enlace puente de hidrógeno es 20 veces más débil o de menor contenido energético que un enlace normal. Pareciera ser de poca importancia, pero debido a la gran cantidad de moléculas y gran cantidad de enlaces de este tipo que puede contener una sustancia, el enlace puente de hidrógeno tiene una especial importancia.
Si se compara al H2O , con el H2S deberían de ser substancias muy parecidas ya que el oxígeno y el azufre pertenecen al mismo grupo (VIA), tienen propiedades parecidas, la diferencia es que el oxígeno es más electronegativo. El agua es una moléula polar y puede formar puentes de hidrógeno, mientras que el ácido sulfhídrico (H2S)es no polar y no tiene dicha capacidad.
Los puentes de hidrógeno que existe entre las moléculas de H2O , explican el incremento del pF, pEb, densidad, viscosidad, capacidad caloríca, etc (ya que las moléculas se encuentran unidas entre sí), a diferencia H2S , cuyas moléculas no cuentan con la atracción puente de hidrógeno y por lo tanto a temperatura ambiente es un gas.
KEKULE
Friedrich August Kekulé von Stradonitz
(conocido también sencillamente como August Kekulé) (Darmstadt, Alemania, 7 de septiembre de 1829 – Tessin, Alemania, 13 de julio de 1896) fue un químico orgánico alemán. Fue considerado uno de los más prominentes químicos orgánicos europeos desde la década de 1850 hasta su muerte, especialmente en el campo teórico, ya que es considerado uno de los principales fundadores de la Teoría de la Estructura Química.
ESTRUCTURA DE LEWIS
La Estructura de Lewis, o puede ser llamada diagrama de punto, modelo de Lewis o ALDA representación de Lewis, es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir.
Esta representación se usa para saber la cantidad de electrones de valencia de un elemento que interactúan con otros o entre su misma especie, formando enlaces ya sea simples, dobles, o triples y estos se encuentran íntimamente en relación con los enlaces químicos entre las moléculas y su geometría molecular, y la distancia que hay entre cada enlace formado.
Las estructuras de Lewis muestran los diferentes átomos de una determinada molécula usando su símbolo químico y líneas que se trazan entre los átomos que se unen entre sí. En ocasiones, para representar cada enlace, se usan pares de puntos en vez de líneas. Los electrones desapartados (los que no participan en los enlaces) se representan mediante una línea o con un par de puntos, y se colocan alrededor de los átomos a los que pertenece.
Electrones de valencia
El número total de electrones representados en un diagrama de Lewis es igual a la suma de los electrones de valencia de cada átomo.
La valencia que tomas como referencia y que representarás en el diagrama es la cantidad de electrones que se encuentran en el ultimo nivel de energía de cada elemento al hacer su configuración electrónica.
Cuando los electrones de valencia han sido determinados, deben ubicarse en el modelo a estructurar.
Una vez que todos los pares solitarios han sido ubicados, los átomos, especialmente los centrales, pueden no tener un octeto de electrones. Los átomos entre sí deben quedar unidos por enlaces; un par de electrones forma un enlace entre los dos átomos. Así como el par del enlace es compartido entre los dos átomos, el átomo que originalmente tenía el par solitario sigue teniendo un octeto; y el otro átomo ahora tiene dos electrones más en su última capa.
La regla del octeto
Artículo principal: Regla del octeto
La regla del octeto, establece que los átomos de los elementos se enlazan unos a otros en el intento de completar su capa de valencia (ultima capa de la electrosfera). La denominación “regla del octeto” surgió en razón de la cantidad establecida de electrones para la estabilidad de un elemento, o sea, el átomo queda estable cuando presenta en su capa de valencia 8 electrones. Para alcanzar tal estabilidad sugerida por la regla del octeto, cada elemento precisa ganar o perder (compartir) electrones en los enlaces químicos, de esa forma ellos adquieren ocho electrones en la capa de valencia. Veamos que los átomos de oxígeno se enlazan para alcanzar la estabilidad sugerida por la regla del octeto. La justificativa para esta regla es que las moléculas o iones, tienden a ser más estables cuando la capa de electrones externa de cada uno de sus átomos está llena con ocho electrones (configuración de un gas noble). Es por ello que los elementos tienden siempre a formar enlaces en la búsqueda de tal estabilidad.
Los átomos son más estables cuando consiguen ocho electrones en la capa de su estado de óxido, sean pares solitarios o compartidos mediante enlaces covalentes. Considerando que cada enlace covalente simple aporta dos electrones a cada átomo de la unión, al dibujar un diagrama o estructura de Lewis, hay que evitar asignar más de ocho electrones a cada átomo.
Sin embargo, hay algunas excepciones. Por ejemplo, el hidrógeno tiene un sólo orbital en su capa de valencia, la cual puede aceptar como máximo dos electrones; por eso, solo puede compartir su orbital con sólo un átomo formando un sólo enlace. Por otra parte, los átomos no metálicos a partir del tercer período pueden formar "octetos expandidos" es decir, pueden contener más que ocho orbitales en su capa de valencia, por lo general colocando los orbitales extra en subniveles.
CARGA FORMAL
Al representar una estructura de Lewis estamos describiendo la forma en que los electrones se distribuyen en una molécula dada. Sin embargo, en algunos casos es posible construir varias estructuras de Lewis para una misma especie, las cuales cumplen todos los requisitos aprendidos previamente. Veamos como ejemplo el CO2. Al calcular el número de enlaces que presenta esta molécula, obtendremos 4. Por tanto, podemos representar su estructura de Lewis de la siguiente forma:
Hemos hecho lo más lógico: si hay que unir dos átomos por medio de cuatro enlaces, pues cada átomo se une al central por medio de un doble enlace. Sin embargo, la siguiente estructura también cumple con los requisitos vistos anteriormente:
Vemos que hay cuatro enlaces covalentes, y cada átomo tiene el octeto completo. ¿Cuál de las dos estructuras es más razonable?
El concepto de carga formal nos ayudará a decidir cuál estructura es más correcta (nótese el término “más”: ambas estructuras son correctas, pero una de ellas es más estable que la otra). La carga formal nos representa la carga eléctrica que posee un átomo en una determinada molécula.
La carga formal de un determinado átomo se calcula de la siguiente forma:
CARGA FORMAL = [N° electrones de valencia] – [N° electrones no enlazados] – [N° de enlaces que tiene el átomo]
Es importante notar que debemos calcular la carga formal de TODOS los átomos que conforman una molécula (o ión) y que la suma de cargas formales debe ser igual a la carga eléctrica de la especie en estudio (si es una molécula neutra, debe ser cero; si es un ión, debe coincidir con la carga de éste).
La ESTRUCTURA MÁS ESTABLE será aquella que:
1. Tenga a sus átomos con cargas formales igual a cero.
2. Tenga a sus átomos con cargas formales similares y más cercanas a cero.
3. Tenga a los átomos más electronegativos soportando las cargas negativas.
NUMERO DE OXIDACION
Se denomina número de oxidación a la carga que se le asigna a un átomo cuando los electrones de enlace se distribuyen según ciertas reglas un tanto arbitrarias.
Las reglas son:
Los electrones compartidos por átomos de idéntica electronegatividad se distribuyen en forma equitativa entre ellos.
Los electrones compartidos por átomos de diferente electronegatividad se le asignan al más electronegativo.
Luego de esta distribución se compara el número de electrones con que ha quedado cada átomo con el número que posee el átomo neutro, y ése es el número de oxidación. Éste se escribe, en general, en la parte superior del símbolo atómico y lleva el signo escrito.
Por ejemplo: Vamos a determinar el número de oxidación del Cl en Cl2 y en HCl.
| |
| |
Los dos electrones de enlace se reparten uno para cada átomo, ya que por tratarse de átomos del mismo elemento, obviamente tendrán igual valor de electronegatividad. Cada átomo de Cl queda ahora con 7 electrones de valencia, que son los mismos que tiene el átomo neutro, lo que determina que su número de oxidación sea 0.
Los dos electrones de enlace se le asignan al Cl por ser el átomo de mayor electronegatividad, quedando así, con 8 electrones de valencia, uno más que los del átomo neutro, por lo que su número de oxidación es –1. El H ha quedado sin su único electrón, y su número de oxidación es +1.
De las dos reglas anteriores surge una serie de reglas prácticas que permiten asignar números de oxidación sin necesidad de representar las estructuras de Lewis, las cuales a veces pueden ser complejas o desconocidas.
Las reglas prácticas pueden sintetizarse de la siguiente manera:
1. En las sustancias simples, es decir las formadas por un solo elemento, el número de oxidación es 0. Por ejemplo: Auo, Cl2o, S8o.
2. El 0xígeno, cuando está combinado, actúa frecuentemente con -2, a excepción de los peróxidos, en cuyo caso actúa con número de oxidación -1.
3. El Hidrógeno actúa con número de oxidación +1 cuando está combinado con un no metal, por ser éstos más electronegativos; y con -1 cuando está combinado con un metal, por ser éstos más electropositivos.
4. En los iones monoatómicos, el número de oxidación coincide con la carga del ión.
Oxidación
En general, la oxidación es la ganancia de oxígeno o pérdida de electrones. El origen del término oxidación procede de las reacciones químicas donde el oxígeno se combinaba con otra sustancia, la sustancia que ganaba oxígeno se oxidaba y la que lo perdía, se reducía. Más tarde los términos oxidación y reducción se aplicaron a procesos donde hay transferencia de electrones; la sustancia que pierde electrones se oxida y la que gana electrones, se reduce.
Siempre que se realiza una oxidación se produce una reducción, y viceversa, ya que se requiere que una sustancia química pierda electrones y otra los gane. Se dice que la oxidación y la reducción son fenómenos concomitantes porque no es posible que exista oxidación sin reducción.
En todas las reacciones de oxidación se libera energía de una forma lenta como en la corrosión de los metales o de una forma rápida o explosiva como en las combustiones.
Reducción
En química, reducción es el proceso electroquímico por el cual un átomo o ion gana electrones. Implica la disminución de su estado de oxidación. Este proceso es contrario al de oxidación.
Cuando un ion o un átomo se reducen presenta estas características:
1. Gana electrones.
2. Actúa como agente oxidante.
3. Es reducido por un agente reductor.
4. Disminuye su estado o número de oxidación.
HIBRIDACION
En química, se habla de hibridación cuando en un átomo, se mezcla el orden de los electrones entre orbitales creando una configuración electrónica nueva. Un orbital híbrido es conveniente para describir la forma en que en la realidad se disponen los electrones para producir las propiedades que se observan en los enlaces atómicos.